skip to main content


Search for: All records

Creators/Authors contains: "Chapman, James"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The southern US and northern Mexican Cordillera experienced crustal melting during the Laramide orogeny (c. 80–40 Ma). The metamorphic sources of melt are not exposed at the surface; however, anatectic granites are present throughout the region, providing an opportunity to investigate the metamorphic processes associated with this orogeny. A detailed geochemical and petrochronological analysis of the Pan Tak Granite from the Coyote Mountains core complex in southern Arizona suggests that prograde metamorphism, melting, and melt crystallization occurred here from 62 to 42 Ma. Ti-in-zircon temperatures (TTi-zr) correlate with changes in zircon rare earth elements (REE) concentrations, and indicate prograde heating, mineral breakdown, and melt generation took place from 62 to 53 Ma. TTi-zr increases from ~650 to 850 °C during this interval. A prominent gap in zircon ages is observed from 53 to 51 Ma and is interpreted to reflect the timing of peak metamorphism and melting, which caused zircon dissolution. The age gap is an inflection point in several geochemical-temporal trends that suggest crystallization and cooling dominated afterward, from 51 to 42 Ma. Supporting this interpretation is an increase in zircon U/Th and Hf, a decrease in TTi-zr, increasing zircon (Dy/Yb)n, and textural evidence for coupled dissolution–reprecipitation processes that resulted in zircon (re)crystallization. In addition, whole rock REE, large ion lithophile elements, and major elements suggest that the Pan Tak Granite experienced advanced fractional crystallization during this time. High-silica, muscovite± garnet leucogranite dikes that crosscut two-mica granite represent more evolved residual melt compositions. The Pan Tak Granite was formed by fluid-deficient melting and biotite dehydration melting of meta-igneous protoliths, including Jurassic arc rocks and the Proterozoic Oracle Granite. The most likely causes of melting are interpreted to be a combination of (1) radiogenic heating and relaxation of isotherms associated with crustal thickening under a plateau environment, (2) heat and fluid transfer related to the Laramide continental arc, and (3) shear and viscous heating related to the deformation of the deep lithosphere. The characteristics and petrologic processes that created the Pan Tak Granite are strikingly similar to intrusive suites in the Himalayan leucogranite belt and further support the association between the North American Cordilleran anatectic belt and a major orogenic and thermal event during the Laramide orogeny.

     
    more » « less
  2. Abstract

    The Pinaleño Mountains of southeastern Arizona is the eastern‐most metamorphic core complex in the southern U.S. and northern Mexican Cordillera. This study investigates the thermal history and exhumation record of the Pinaleño core complex using mica40Ar/39Ar, apatite and zircon (U‐Th)/He, and apatite fission‐track thermochronometers. The Pinaleño Mountains experienced two periods of rapid cooling during the Cenozoic. The first period, from ca. 27 to 21 Ma, records tectonic exhumation related to the development of the core complex and extensional shear zone. This period was followed by a relatively quiescent interval from 21 to 13.5 Ma that records little to no exhumation. The second period of rapid cooling, from 13.5 to 11 Ma, records tectonic exhumation related to high‐angle normal faulting, characteristic of the Basin and Range province. The exhumation timing of the Pinaleño core complex matches previously recognized spatiotemporal trends in the southern Basin and Range province and indicates that core complex exhumation in this region started in southeastern Arizona (ca. 32–33°N) and migrated both northward and southward. These trends correlate well with the latitude and timing of subduction of the Pacific‐Farallon spreading ridge and the migration of the Mendocino (northward) and Rivera (southward) triple junctions. Spatiotemporal core complex exhumation trends also correlate well with regional magmatism associated with the mid‐Cenozoic flare‐up, including syn‐extensional intrusive rocks found in the footwalls of core complexes.

     
    more » « less
  3. Zelnio, Edmund ; Garber, Frederick D. (Ed.)
    Free, publicly-accessible full text available June 13, 2024
  4. Abstract

    Recent advancements in quantitatively estimating the thickness of Earth's crust in the geologic past provide an opportunity to test hypotheses explaining the tectonic evolution of southern Tibet. Outstanding debate on southern Tibet's Cenozoic geological evolution is complicated by poorly understood Mesozoic tectonics. We present new U‐Pb geochronology and trace element chemistry of detrital zircon from modern rivers draining the Gangdese Mountains in southern Tibet. Results are similar to recently published quantitative estimates of crustal thickness derived from intermediate‐composition whole rock records and show ~30 km of crustal thinning from 90 to 70 Ma followed by thickening to near‐modern values from 70 to 40 Ma. These results extend evidence of Late Cretaceous north–south extension along strike to the west by ~200 km, and support a tectonic model in which an east–west striking back‐arc basin formed along Eurasia's southern margin during slab rollback, prior to terminal collision of India with Eurasia.

     
    more » « less
  5. null (Ed.)
    The Orocopia Schist and related schists are sediments subducted during the Laramide orogeny and are thought to have been underplated as a laterally extensive layer at the base of the crust in the southwestern United States Cordillera. This concept is hard to reconcile with the existence of continental mantle lithosphere in southeastern California and western Arizona. Analytical solutions and numerical modeling suggest that the Orocopia Schist may have ascended through the mantle lithosphere as sediment diapirs or subsolidus crustal plumes to become emplaced in the middle to lower crust. Modeled time-temperature cooling paths are consistent with the exhumation history of the Orocopia Schist and explain an initial period of rapid cooling shortly after peak metamorphism. The Orocopia Schist represents a potential example of relaminated sediment observable at the surface. 
    more » « less
  6. Abstract This article considers a long-outstanding open question regarding the Jacobian determinant for the relativistic Boltzmann equation in the center-of-momentum coordinates. For the Newtonian Boltzmann equation, the center-of-momentum coordinates have played a large role in the study of the Newtonian non-cutoff Boltzmann equation, in particular we mention the widely used cancellation lemma [1]. In this article we calculate specifically the very complicated Jacobian determinant, in ten variables, for the relativistic collision map from the momentum p to the post collisional momentum $$p'$$ p ′ ; specifically we calculate the determinant for $$p\mapsto u = \theta p'+\left( 1-\theta \right) p$$ p ↦ u = θ p ′ + 1 - θ p for $$\theta \in [0,1]$$ θ ∈ [ 0 , 1 ] . Afterwards we give an upper-bound for this determinant that has no singularity in both p and q variables. Next we give an example where we prove that the Jacobian goes to zero in a specific pointwise limit. We further explain the results of our numerical study which shows that the Jacobian determinant has a very large number of distinct points at which it is machine zero. This generalizes the work of Glassey-Strauss (1991) [8] and Guo-Strain (2012) [12]. These conclusions make it difficult to envision a direct relativistic analog of the Newtonian cancellation lemma in the center-of-momentum coordinates. 
    more » « less
  7. Abstract

    Deposition of the Late Jurassic Morrison Formation in a back‐bulge depozone and formation of the overlying sub‐Cretaceous unconformity above a forebulge mark the birth of the foreland basin system in the central U.S. Cordillera. In the southern U.S. Cordillera, the Morrison Formation is either anomalously thick or absent and the sub‐Cretaceous unconformity cuts out progressively older stratigraphy toward the south on the Colorado Plateau. Based on results of 2D and 3D flexural modeling, we suggest that flexural uplift of the northern rift flank of the Bisbee segment of the Borderland Rift Belt can explain these observations. Structural restoration of the sub‐Cretaceous unconformity indicates a minimum of 1.5 km of uplift and flexural models with an effective elastic thickness of 55 ± 5 km can reproduce the geometry of the unconformity and rift flank. This implies that effective elastic thickness has decreased between the Jurassic and the present, consistent with hypotheses for uplift and modification of the Colorado Plateau lithosphere during the Late Mesozoic to Cenozoic. Modeling results also predict the presence of a rift‐related flexural trough in the Four Corners region of the Colorado Plateau, which may explain above‐average thickness of the Morrison Formation. Constructive interference between a flexural back‐bulge depozone and a flexural rift‐flank trough may help explain anomalously high Late Jurassic subsidence.

     
    more » « less
  8. null (Ed.)
  9. Abstract Previous studies of the central United States Cordillera have indicated that a high-elevation orogenic plateau, the Nevadaplano, was present in Late Cretaceous to early Paleogene time. The southern United States Cordillera and northern Mexican Cordillera share a similar geologic history and many of the same tectonic features (e.g., metamorphic core complexes) as the central United States Cordillera, raising the possibility that a similar plateau may have been present at lower latitudes. To test the hypothesis of an elevated plateau, we examined Laramide-age continental-arc geochemistry and employed an empirical relation between whole-rock La/Yb and Moho depth as a proxy for crustal thickness. Calculations of crustal thickness from individual data points range between 45 and 72 km, with an average of 57 ± 12 km (2σ) for the entire data set, which corresponds to 3 ± 1.8 km paleoelevation assuming simple Airy isostasy. These crustal thickness and paleoaltimetry estimates are similar to previous estimates for the Nevadaplano and are interpreted to suggest that an analogous high-elevation plateau may have been present in the southern United States Cordillera. This result raises questions about the mechanisms that thickened the crust, because shortening in the Sevier thrust belt is generally not thought to have extended into the southern United States Cordillera, south of ∼35°N latitude. 
    more » « less